
fischertechnik
ROBOTICS TXT Controller

C-Programming Kit
Firmware Version 4.1.6

Table of contents
Communication Methods...1
Folder structure / example projects..2
Compiling and running the sample programs..2
Description of the Communication Protocol..3

ftIF2013CommandId_QueryStatus..3
ftIF2013CommandId_StartOnline...3
ftIF2013CommandId_UpdateConfig...4
ftIF2013CommandId_ExchangeData..5
ftIF2013Command_ExchangeDataCmpr..6
ftIF2013CommandId_StopOnline...6
ftIF2013CommandId_StartCameraOnline...7
ftIF2013DataId_CameraOnlineFrame...7
ftIF2013CommandId_StopCameraOnline...8

The ftIF2013TransferAreaComHandler class..8
Appendix A: List of sound files..9

Communication Methods
The online mode communication with the fischertechnik ROBOTICS TXT Controller works via
TCP/IP communication to port 65000 on the TXT. The C programming kit contains C++ source
code for a class handling the communication. This C++ class serves as an example for
implementing the TXT communication protocol as well as a ready to implementation which
converts the TXT TCP/IP protocol to a transfer area based protocol as used by the TX controller.
The C++ code also contains functions for retrieving JPEG camera frames and sample code for
decoding JPEG images to raw YUV.

The C++ wrapper is not necessarily required. In other languages which offer TCP/IP
communication, the communication protocol can be implemented directly. The C++ source code my
serve as example code for implementation of the protocol in other languages. Of cause users with
special needs can also implement their own C++ library, which does not use a TX compatible
transfer area.

Note on download mode communication: A separate download kit will be released later, but for
those who cannot wait a note: A program running on the TXT can communicate to the ROBOPro
app via TCP/IP in the same way as a PC in online mode. You just need to use localhost or 127.0.0.1
as host name when connecting. The sample code uses posix sockets, so a port to Linux should be
fairly easy.

Folder structure / example projects
The communication kit has the following folder structure:

• The root folder contains a Microsoft Visual C++ solution file (OnlineSamples.sln)

• Common: C++ header and implementation files for the communication protocol

◦ ftProInterface2013SocketCom.h/.cpp: direct TCP/IP communication protocol

◦ ftProInterface2013TransferAreaCom.h/.cpp: wrapper for transfer area based

communication and sample for direct communication

◦ ftProInterface2013JpegDecode.h./cpp: wrapper for JPEG decoder

◦ common.h / FtShmem.h: transfer area header files (compatible with TX)

• MotorOnOffSwitch: A sample program (Main.cpp + Microsoft Visual C++ project file)

which switches a motor on and off using a switch on master and extension interface.

• Camera: A sample program (Main.cpp + Microsoft Visual C++ project file) which shows

how to retrieve and decode a JPEG image from the camera.

• Jpeg: The independent JPEG group JPEG decoder / encoder with Microsoft Visual C++

library project file. The supplied sources are the variant delivered with wxWidgets. The
source for the stand alone JPEG decoder and encoder application are not included.

In case you don't have Microsoft Visual Studio 2008 or later, don't worry. All projects are simple
and it should be no problem to set them up with any other C environment. Linux environments
should already contain a JPEG decoder library, which is compatible with the sources in this kit, so
there is no need to compile this on Linux PCs and embedded Linux like the TXT.

Compiling and running the sample programs
If you want to run the sample programs, you first need to compile them. If you use Micorosoft
Visual Studio, just open the file OnlineSamples.sln in the root folder of the kit. Right click on the
project you want to run (Camera or MotorOnOffSwitch) and select “Set as StartUp project”. Then
select “Start debugging” or “Start without Debugging” from the Debug menu (the exact names
might be slightly different, depending on the Visual Studio Version). This should automatically
compile and link the sample and run it.

It is expected that the TXT is connected via USB if you run the sample programs. If the TXT is
connected via WiFi or Bluetooth, you need to change the IP address in Main.cpp in the call to the
ftIF2013TransferAreaComHandler constructor.

Description of the Communication Protocol
The TCP/IP communication protocol is described in the header file
ftProInterface2013SocketCom.h. The program needs to opens a socket to port 65000 at address
192.168.7.2 (for USB connection, 192.168.8.2 for WiFi and 192.168.9.2 for Bluetooth), sends one
or more command packets and receives for each command packet a response packet. Each
command and response packet starts with a 4 byte command or response id. The IDs are random
numbers and serve as command ID and “magic code” at the same time. The command and response

IDs are listed in ftProInterface2013SocketCom.h in the enums ftIF2013CommandId and

ftIF2013ResponseId. For each command and response the header file contains a C structure.

For example the structure ftIF2013Command_QueryStatus belongs to the command

ftIF2013CommandId_QueryStatus. The C structures are sent to and received from the

socket as little-endian binary data. Intel based PCs and the TXT are little-endian but some ARM
based embedded controllers might be configured as big-endian, so that the byte order must be
swapped on send and receive. If you don't know what big- or little-endian means, look for
endianness in wikipedia. But as long as you use a PC to control the TXT, you don't need to worry
about endianness.

Most of the commands and responses are straight forward fixed length commands. The only more

complicated command is ftIF2013CommandId_ExchangeDataCmpr, which does a

compressed data transfer and uses variable length data. The file

ftProInterface2013SocketCom.h/.cpp contains two C++ classes for compressing and

decompressing the transfer data.

It follows a description of the individual commands, in the order in which they are usually issued.

ftIF2013CommandId_QueryStatus
This command requests the name of the TXT controller and the software version number. It can also
be used as ping command to check if the connection is OK.

Command Structure ftIF2013Command_QueryStatus

m_id Command id = ftIF2013CommandId_QueryStatus

Response Structure ftIF2013Response_QueryStatus

m_id Response id = ftIF2013ResponseId_QueryStatus

m_devicename Name of the TXT controller

m_version Version code, e.g. 0x04010600 for version 4.1.6

ftIF2013CommandId_StartOnline
This command puts the TXT in online mode. A download program (if active) is stopped, the touch
user interface of the TXT is blocked and the compressed data transfer is reset.

This command must be called before any ftIF2013CommandId_ExchangeData,
ftIF2013CommandId_ExchangeDataCmpr or ftIF2013CommandId_UpdateConfig command.

It is recommended to issues a ftIF2013CommandId_UpdateConfig command for each active master
/ extension before the first data exchange command.

Command Structure ftIF2013Command_StartOnline

m_id Command id = ftIF2013CommandId_StartOnline

Response Structure ftIF2013Response_StartOnline

m_id Response id = ftIF2013ResponseId_StartOnline

ftIF2013CommandId_UpdateConfig
This command requests the name of the TXT controller and the software version number. It can also
be used as ping command to check if the connection is ok.

Command Structure ftIF2013Command_UpdateConfig

m_id Command id = ftIF2013CommandId_UpdateConfig

m_config_id A configuration id counter which starts at 0 and needs to be
incremented on each change of configuration. An update config
command is ignored, if the m_config_id does not change. The first
configuration usually has m_config_id=1.

m_extension_id 0 for master, 1 for extension (or higher numbers when more
extensions are supported by the TXT firmware).

m_config A structure containing configuration data. For compatibility reasons
the structure is the same as in the TX C programming libraries. The
most relevant fields are the universal input configuration. Please
note that you need to configure the kind of input (resistance,
voltage, …) and the choice if it is analog or digital. E.g. a usual
switch input is a digital resistance input.
The motor outputs needs to be configures as either combined motor
output or as 2 independent pairs. This is used to control power
saving of the motor outputs. Please note that motors are always
programmed in 512 steps. The 8/512 step distinction in ROBOPro
is handled inside of ROBOPro.

Response Structure ftIF2013Response_UpdateConfig

m_id Response id = ftIF2013ResponseId_UpdateConfig

ftIF2013CommandId_ExchangeData
This is the simpler of two online-mode data exchange commands. It support only a master
controller, no extensions. The advantage of this command is, that the data transmission is not
compressed and straight forward.

Command Structure ftIF2013Command_ExchangeData

m_id Command id = ftIF2013CommandId_ExchangeData

m_pwmOutputValues The (PWM) pulse with modulation values between 0 and 512 for
the 8 outputs. A motor output uses two consecutive values (M1 uses
index 0 and 1). If the output is used as motor output, always one of
the 2 outputs is 0, while the other value is between 0 and 512.

m_motor_master This is used to synchronize one motor to another motor. 0 means
the motor is independent. 1..4 means the motor is synchronized to
motor 1..4. If a value of 5..8 is given, it is possible to program
deviations from the synchronization using the m_motor_distance
values. This is called “sync error injection”. This is useful e.g. for
closed loop trail tracking. If this value is changed,
m_motor_command_id must be incremented.

m_motor_distance If this value is not 0, the motor will stop after the corresponding
counter input counted the given number of pulses. In sync error
injection mode, this is used as described above. If this value is
changed, m_motor_command_id must be incremented. Distance
commands automatically reset the counter.

m_motor_command_id This value needs to be incremented whenever m_motor_master or
m_motor_distance change. m_pwmOutputValues can be changed
without incrementing the command id. A distance command is
finished, if the m_motor_command_id in the response structure has
the same value.

m_counter_reset_comm
and_id

If this values is incremented, the corresponding counter is reset.
The reset is finished, if m_counter_command_id in the response
structure has the same value.

m_sound_command_id This value must be incremented, whenever m_sound_index or
m_sound_repeat change, or to play the same sound again.

m_sound_index Index of the sound to play, 0=no sound. The index numbers of the
sounds are given in appendix A at the end of this document. Please
note that it is possible to exchange the sound files on the TXT
filesystem in folder /opt/knobloch/SoundFiles using ssh and/or scp.
The file name must start with a 2 digit number stating the sound
index. The sound files are 8-bit mono 22050 Hz and can be created
e.g. with Audacity.

m_sound_repeat A repeat count for the sound. 0 means indefinite. Sounds can be
stopped at any time by sending a new sound command with
m_sound_index.

Response Structure ftIF2013Response_ExchangeData

m_id Response id = ftIF2013ResponseId_ExchangeData

m_universalInputs Values of the 8 universal inputs. Depending on the configuration
this is either a analog value or 0 or 1 for digital inputs.

m_counter_input The current values (0 or 1) of the 4 counter inputs.

m_counter_value The count value of the 4 counter inputs. The counter value can be
reset by incrementing m_counter_reset_command_id.

m_counter_command_i
d

This value changes to the last m_counter_reset_command_id in the
command structure after a reset command finished.

m_motor_command_id This value changes to the last m_motor_command_id in the
command structure after a motor distance command is finished.

m_sound_command_id This value changes to the last m_sound_command_id in the
command structure after a sound playback finished.

m_ir This array of structures contains the infrared remote control input
values. The values are given once for each combination of
switches, so that up to 4 remote controls can be used. The 5th
structure (with index 4) responds to a control with any switch
setting. Please note, that the switch states are also submitted, but
not when the switch changes. They are only submitted when some
other value changes.

ftIF2013Command_ExchangeDataCmpr
The detailed description of this command is beyond the scope of this document. Please refer to the
documentation of the structure in ftProInterface2013SoecketCom.h, the classes CompressionBuffer
and ExpansionBuffer in the same file and the usage of the command in the member function
DoTransferCompressed of the ftIF2013TransferAreaComHandler class. The field names and
meanings are the same as for the uncompressed data transfer command.

The TXT checks the transmitted CRC of the decompressed data. If the CRC doesn't match, the
online mode is aborted. This way the compression algorithms as well as the data transmission is
checked.

ftIF2013CommandId_StopOnline
This command puts the TXT back into idle mode. After this command, data exchange and update
config commands should no longer be sent.

Command Structure ftIF2013Command_StopOnline

m_id Command id = ftIF2013CommandId_StopOnline

Response Structure ftIF2013Response_StopOnline

m_id Response id = ftIF2013ResponseId_StopOnline

ftIF2013CommandId_StartCameraOnline
This command starts a camera server on port 65001. It usually takes about 1..2 seconds to start the
server. Please note, that the camera start and stop commands are sent to port 65000. Only the frames
are transferred over port 65001.

Command Structure ftIF2013Command_StartCameraOnline

m_id Command id = ftIF2013CommandId_StartCameraOnline

m_width Camera frame width, usually 320. Please see the documentation for
the StartCamera function of the ftIF2013TransferAreaComHandler
class for supported resolutions.

m_height Camera frame height, usually 240

m_framerate Camera frame rate, usually 30

m_powerlinefreq Frequency of the powerline. This is used to avoid flickering video
images with artificial illumination.

Response Structure ftIF2013Response_StartCameraOnline

m_id Response id = ftIF2013ResponseId_StartCameraOnline

ftIF2013DataId_CameraOnlineFrame
This command is an exception of the usual command/response protocol. The camera frame lag
would be to high, if the application would have to request a frame before being able to receive it.
The camera server sends a frame to the TCP/IP socket as soon as it is started. The application first
reads the frame and then sends an acknowledge. After receiving the acknowledge, the server sends
the next frame to the socket. Also please note, that this communication happens on port 65001, not
on port 65000 as all other communication.

Data Structure ftIF2013Response_CameraOnlineFrame (received)

m_id Data id = ftIF2013DataId_CameraOnlineFrame

m_numframeready Number of frames ready in the queue. If this number gets >1, the
transfer is too slow and the lag increases.

m_framewidth Camera frame width

m_frameheight Camera frame height

m_framesizeraw Decompressed size of the frame, usually width*height*2

m_framesizecompress
ed

Size of the frame compressed as JPEG. This number of bytes
follows directly after the structure. Typically first this header
structure is read and then the data into a separate memory.

m_framedata 0-sized dummy array receiving the JPEG compressed frame data.

Acknowledge Structure ftIF2013Acknowledge_CameraOnlineFrame (sent)

m_id Acknowledge id = ftIF2013AcknowledgeId_CameraOnlineFrame

ftIF2013CommandId_StopCameraOnline
This command stops the camera server on port 65001.

Command Structure ftIF2013Command_StopCameraOnline

m_id Command id = ftIF2013CommandId_StopCameraOnline

Response Structure ftIF2013Response_StopCameraOnline

m_id Response id = ftIF2013ResponseId_StopCameraOnline

The ftIF2013TransferAreaComHandler class
This class is provided as an example implementation of the protocol described above as well as a
convenient wrapper to a transfer area based protocol. The usage of this class is shown and
documented in the two sample programs MotorOnOffSwitch.h and Camera.h. Also the header file
ftProInterface2013TransferAreaCom.h contains documentation on each function. Please note the
comments on thread safety and other topics at the beginning of the header file.

Appendix A: List of sound files
01_Airplane.wav

02_Alarm.wav

03_Bell.wav

04_Braking.wav

05_Car-horn-long.wav

06_Car-horn-short.wav

07_Crackling-wood.wav

08_Excavator.wav

09_Fantasy-1.wav

10_Fantasy-2.wav

11_Fantasy-3.wav

12_Fantasy-4.wav

13_Farm.wav

14_Fire-department.wav

15_Fire-noises.wav

16_Formula1.wav

17_Helicopter.wav

18_Hydraulic.wav

19_Motor-sound.wav

20_Motor-starting.wav

21_Propeller-airplane.wav

22_Roller-coaster.wav

23_Ships-horn.wav

24_Tractor.wav

25_Truck.wav

26_Augenzwinkern.wav

27_Fahrgeraeusch.wav

28_Kopf_heben.wav

29_Kopf_neigen.wav

	Communication Methods
	Folder structure / example projects
	Compiling and running the sample programs
	Description of the Communication Protocol
	ftIF2013CommandId_QueryStatus
	ftIF2013CommandId_StartOnline
	ftIF2013CommandId_UpdateConfig
	ftIF2013CommandId_ExchangeData
	ftIF2013Command_ExchangeDataCmpr
	ftIF2013CommandId_StopOnline
	ftIF2013CommandId_StartCameraOnline
	ftIF2013DataId_CameraOnlineFrame
	ftIF2013CommandId_StopCameraOnline

	The ftIF2013TransferAreaComHandler class
	Appendix A: List of sound files

